Dividing Cells Regulate Their Lipid Composition and Localization
نویسندگان
چکیده
Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology.
منابع مشابه
Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملAurora B but Not Rho/MLCK Signaling Is Required for Localization of Diphosphorylated Myosin II Regulatory Light Chain to the Midzone in Cytokinesis
Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to th...
متن کاملCharacterization of the Drosophila lipid droplet subproteome.
Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 ...
متن کاملPlasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana
The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to b...
متن کاملA Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses
Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid compositio...
متن کامل